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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  11]

	 The weights,  X  kg, of the males of a species of bird may be assumed to be normally 
distributed with mean 4.8 kg and standard deviation 0.2 kg.

	 (a)	 Find the probability that a randomly chosen male bird weighs between 4.75 kg and 
4.85 kg. [1]

	 The weights,  Y  kg, of female birds of the same species may be assumed to be normally 
distributed with mean 2.7 kg and standard deviation 0.15 kg.

	 (b)	 Find the probability that the weight of a randomly chosen male bird is more than twice 
the weight of a randomly chosen female bird. [6]

	 (c)	 Two randomly chosen male birds and three randomly chosen female birds are placed 
on a weighing machine that has a weight limit of 18 kg.  Find the probability that the 
total weight of these five birds is greater than the weight limit. [4]

2.	 [Maximum mark:  8]

	 Consider an unbiased tetrahedral (four-sided) die with faces labelled 1, 2, 3 and 4 
respectively.
The random variable  X  represents the number of throws required to obtain a 1.

	 (a)	 State the distribution of  X . [1]

	 (b)	 Show that the probability generating function,  G(t) , for  X  is given by G t t
t

( ) =
−4 3

. [4]

	 (c)	 Find  G'(t) . [2]

	 (d)	 Determine the mean number of throws required to obtain a 1. [1]
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3.	 [Maximum mark:  12]

	 A smartphone’s battery life is defined as the number of hours a fully charged battery can be 
used before the smartphone stops working.  A company claims that the battery life of a model 
of smartphone is, on average, 9.5 hours.  To test this claim, an experiment is conducted on a 
random sample of 20 smartphones of this model.  For each smartphone, the battery life,  
b  hours, is measured and the sample mean, b , calculated.  It can be assumed the battery 
lives are normally distributed with standard deviation 0.4 hours.

	 (a)	 State suitable hypotheses for a two-tailed test. [1]

	 (b)	 Find the critical region for testing b  at the 5 % significance level. [4]

	 It is then found that this model of smartphone has an average battery life of 9.8 hours.

	 (c)	 Find the probability of making a Type II error. [3]

	 Another model of smartphone whose battery life may be assumed to be normally distributed 
with mean  µ  hours and standard deviation 1.2 hours is tested.  A researcher measures the 
battery life of six of these smartphones and calculates a confidence interval of  [10.2 , 11.4]  
for  µ .

	 (d)	 Calculate the confidence level of this interval. [4]

4.	 [Maximum mark:  11]

	 The random variables  X , Y  follow a bivariate normal distribution with product moment 
correlation coefficient  ρ .

	 (a)	 State suitable hypotheses to investigate whether or not a negative linear association 
exists between  X  and  Y . [1]

	 A random sample of 11 observations on  X , Y  was obtained and the value of the sample 
product moment correlation coefficient,  r , was calculated to be  -0.708 .

	 (b)	 (i)	 Determine the  p-value.

		  (ii)	 State your conclusion at the 1 % significance level. [4]

	 The covariance of the random variables  U , V  is defined by 
Cov(U , V) = E((U - E(U ))(V - E(V ))) .

	 (c)	 (i)	 Show that  Cov(U , V) = E(UV ) - E(U )E(V ) .

		  (ii)	 Hence show that if   U , V  are independent random variables then the population 
product moment correlation coefficient,  ρ , is zero. [6]

Turn over
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5.	 [Maximum mark:  8]

	 The random variable  X  has a binomial distribution with parameters  n  and  p .

	 (a)	 Show that P X
n

=  is an unbiased estimator of  p . [2]

	 Let  U = nP(1 - P) .

	 (b)	 (i)	 Show that  E(U ) = (n - 1)p(1 - p) .

		  (ii)	 Hence write down an unbiased estimator of  Var(X ) . [6]
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